

Mathematics Specialist Units 1,2 Test 2 2017

Section 1 Calculator Free Vectors

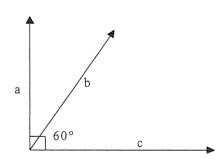
STUDENT'S NAME

SOLUTIONS

DATE: Friday 31 March

TIME: 28 minutes

MARKS: 28


INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (4 marks)

Given the 3 vectors shown above and |a| = 5, |b| = 6 and |c| = 4, determine

(a)
$$a \cdot a$$
 [1]

(b)
$$a \cdot b$$
 [2]
$$5 \times 6 \times \text{Cop } 30^{\circ}$$

$$= 15 \sqrt{3}$$

(c)
$$\mathbf{a} \bullet \mathbf{c}$$
 [1]

2. (4 marks)

Determine all vectors of magnitude 5 that are perpendicular to 6i + 8j.

3. (3 marks)

Determine the value/s of m if the vectors $\mathbf{a} = \begin{pmatrix} m+1 \\ -2 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} m \\ m+1 \end{pmatrix}$ are perpendicular.

$$\binom{M+1}{-2}$$
, $\binom{M}{M+1} = 0$
 $\binom{M+1}{-2}$, $\binom{M+1}{M+1} = 0$
 $\binom{M}{-1}$, $\binom{M+1}{M+1} = 0$
 $\binom{M-1}{M+1} = 0$
 $\binom{M-1}{M+1} = 0$
 $\binom{M-1}{M+1} = 0$

4. (3 marks)

A and B have position vectors $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$ and $\begin{pmatrix} 8 \\ 8 \end{pmatrix}$ respectively. Determine the position vector of the point P that divides AB in the ration 3:2.

$$OP = OA + \frac{3}{5}AB$$

$$= \binom{3}{2} + \frac{3}{5} \left(\binom{8}{8} - \binom{3}{-7} \right)$$

$$= \binom{3}{-7} + \frac{3}{5} \left(\frac{5}{15} \right)$$

$$= \binom{6}{2}$$

5. (10 marks)

Given the vectors p = 16i - 2j, q = 15i + 8j and r = 4i + bj, determine the value of b in the following situations.

(a)
$$p$$
 and r are parallel $\begin{pmatrix} 16 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ [2]
 $16 = 4\lambda$ $-2 = 24b$
 $-2 = 4b$
 $-\frac{1}{2} = b$

(b)
$$p, q$$
 and r are collinear

$$\begin{array}{c}
-2 \\
\hline
P? = (8) - (16) \\
\hline
= (-1) \\
\hline
= (-1) \\
\hline
= (-12) \\
\hline
(-1) = \lambda \\
\hline
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-12) \\
(-$$

(c)
$$r$$
 is a unit vector [1] $|\gamma| > 1$ No solution

(d)
$$|\mathbf{r}| = 7$$

$$\int 4^{2} + 6^{2} = 7$$
 [3]
$$16 + 6^{2} = 49$$

$$6^{2} = 33$$

$$6 = \pm \sqrt{33}$$

6. (4 marks)

The position vector of A is $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$. The vector of B relative to A and of B relative to C are $\begin{pmatrix} -8 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 5 \\ 10 \end{pmatrix}$ respectively. Determine the position vector of C.

$$BY_{A} = Y_{B} - Y_{A}$$

$${\binom{-8}{2}} = Y_{B} - {\binom{3}{4}}$$

$${\binom{-8}{2}} + {\binom{3}{4}} = Y_{B}$$

$${\binom{-5}{6}} = Y_{B}$$

$$BTc = T_B - T_c$$

$$\binom{5}{10} = \binom{-5}{6} - T_c$$

$$T_c = \binom{-5}{6} - \binom{5}{10}$$

$$= \binom{-10}{-4}$$

Mathematics Specialist Units 1,2 Test 2 2017

Section 2 Calculator Assumed Vectors

STUDENT'S NAME

50 CU TIONS

DATE: Friday 31 March

TIME: 32 minutes

MARKS: 32

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

7. (3 marks)

A coastguard boat is chasing a drug runner's boat and is directly behind it. The drug runner's boat is travelling with constant velocity of (16i - 12j) m/s. The coastguard is gaining on the drug runners at a constant 8 m/s.

Determine the velocity of the coastguard boat.

$$REQU VELORITY = 28 (16i-12j')$$

$$=$$
 $\begin{pmatrix} 22.4 \\ -16.8 \end{pmatrix}$

8. (5 marks)

To a motorcyclist travelling at 108 km/hr on a bearing of 137°, the wind appears to be coming from a bearing of 191° at 64 km/hr. Determine the true velocity of the wind.

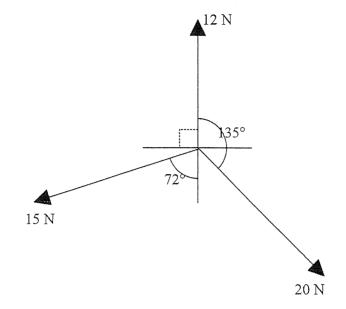
9. (4 marks)

An object moves with a constant velocity of (-2i - j) m/s. If the initial position of the object, with respect to the origin, is (18i - j) m, determine when the object is 28 m from the origin.

$$T = {\binom{18}{-1}} + t {\binom{-2}{-1}}$$

$$T = {\binom{18-2t}{-1-t}}$$

$${\binom{18-2t}{-1-t}} = 28$$


$$T = {\binom{18-2t}{-1-t}}^2 = 28$$

$$T = {\binom{18-2t}{-1-t}}^2 = 28$$

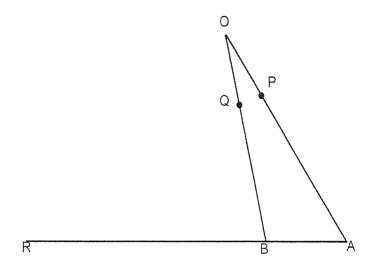
$$T = {\binom{18}{-2}} + {\binom{-1-t}{-1-t}}^2 = 28$$

10. (5 marks)

Determine the magnitude and the direction of the resultant of the three forces shown in the diagram below.

$$(12,90^{\circ}) + (20,-45^{\circ}) + (15,-162^{\circ})$$

$$= (0) + (14.14) + (-14.26)$$


$$= (-0.12)$$

$$= (-0.78)$$

11. (7 marks)

The origin O and the points P, Q, A, B and R are shown in the diagram below. Also $\overrightarrow{OP} = \frac{1}{3}\overrightarrow{OA}$, $\overrightarrow{AR} = 3\overrightarrow{AB}$, and $|\overrightarrow{OQ}| : |\overrightarrow{QB}| = 3:4$.

Let $\overrightarrow{OA} = \tilde{a}$ and $\overrightarrow{OB} = \tilde{b}$.

(a) Determine
$$\overrightarrow{PQ}$$
 in terms of \tilde{a} and \tilde{b} .

$$OP = \frac{a}{3}$$

$$OQ = \frac{3b}{3} - \frac{a}{3}$$

$$OQ = \frac{3b}{3}$$

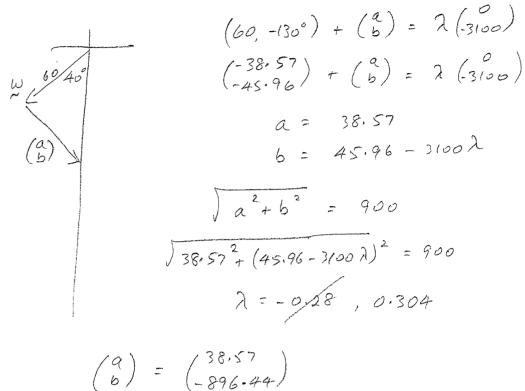
(b) Determine
$$\overrightarrow{PR}$$
 in terms of \tilde{a} and \tilde{b} .

$$PA = \frac{2a}{3}$$
 $PR = PA - AR$
 $AB = b - a$
 $AB = 3b - 3a$
 $AR = 3b - 3a$

$$\begin{array}{rcl}
 & PQ &=& 3b - \frac{7a}{3} \\
 & = & \frac{9b}{21} - \frac{7a}{21} \\
 & = & \frac{1}{3} \left(\frac{9b}{7a} \right) \\
 & = & \frac{1}{3} \left(\frac{9b}{7a} \right)
 \end{array}$$

-. COLLINEAR

[2]


[2]

[3]

12. (8 marks)

A pilot's destination is Perth from Bali (which is due South of Bali). The jet being flown can travel at 900 km/hr in still air. However, a 60 km/hr wind is blowing from a bearing of 40°.

(a) Determine the direction in which the pilot points the jet so that he can fly directly to Perth. [4]

(b) How long will it take the pilot to fly to Perth given that it is 3100 km from Bali?

$$\frac{1}{0.304} = 3.29 \text{ HRS}$$

(c) At what actual speed does the jet fly?

Page 10 of 10

[2]

[2]